

Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration)

From Springer

Download now

Read Online

Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer

The central theme of this book “*Microbial BioEnergy: Hydrogen Production*” is focused on the biological machinery that microorganisms use to produce hydrogen gas. The book summarizes the achievements over the past decade in the biochemistry, structural and molecular biology, genomics and applied aspects of microbial H₂-production, including microbial fuel cells (MFC), by phototrophs such as purple sulfur and non-sulfur bacteria (*Thiocapsa* spp., *Rhodobacter* and *Rhodopseudomonas* spp.) microalgae (*Chlamydomonas*) and cyanobacteria (*Anabaena* spp.) along with anaerobes and thermophiles such as *Caldicellulosiruptor* and *Thermotoga*. This is the first book of this series entirely devoted to microbial bio-hydrogen production and is intended to be a precious source of information for PhD students, researchers and undergraduates from disciplines such as microbiology, biochemistry, biotechnology, photochemistry and chemical engineering, interested in basic and applied sciences.

 [Download Microbial BioEnergy: Hydrogen Production \(Advances ...pdf](#)

 [Read Online Microbial BioEnergy: Hydrogen Production \(Advanc ...pdf](#)

Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration)

From Springer

Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer

The central theme of this book “*Microbial BioEnergy: Hydrogen Production*” is focused on the biological machinery that microorganisms use to produce hydrogen gas. The book summarizes the achievements over the past decade in the biochemistry, structural and molecular biology, genomics and applied aspects of microbial H₂-production, including microbial fuel cells (MFC), by phototrophs such as purple sulfur and non-sulfur bacteria (*Thiocapsa* spp., *Rhodobacter* and *Rhodopseudomonas* spp.) microalgae (*Chlamydomonas*) and cyanobacteria (*Anabaena* spp.) along with anaerobes and thermophiles such as *Caldicellulosiruptor* and *Thermotoga*. This is the first book of this series entirely devoted to microbial biohydrogen production and is intended to be a precious source of information for PhD students, researchers and undergraduates from disciplines such as microbiology, biochemistry, biotechnology, photochemistry and chemical engineering, interested in basic and applied sciences.

Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer Bibliography

- Sales Rank: #8702878 in Books
- Published on: 2014-02-25
- Original language: English
- Number of items: 1
- Dimensions: 10.07" h x 1.09" w x 7.37" l, 2.55 pounds
- Binding: Hardcover
- 366 pages

[Download Microbial BioEnergy: Hydrogen Production \(Advances ...pdf](#)

[Read Online Microbial BioEnergy: Hydrogen Production \(Advanc ...pdf](#)

Download and Read Free Online Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer

Editorial Review

Review

“The current volume has 15 chapters written by 42 authors almost exclusively from Europe and North America . . . I also recommend that this book be acquired by all the laboratories engaged in biohydrogen research, as well as by all universities and research institutes with advanced undergraduates, graduate students, and postdoctoral fellows in Plant Biology, Plant Sciences, Molecular Biology, Biochemistry, Biophysics, Bioengineering, and Biotechnology.” (Michael Seibert, *Photosynthesis Research*, Vol. 127, 2016)

From the Back Cover

Solar energy is the source of most of the living organisms on Earth so that the overall efficiency of oxygenic and/or non-oxygenic photosynthesis, when used to generate biomass, bioenergy and biofuels, is a critical point to be considered. This volume in the Advances in Photosynthesis and Respiration series, however, not only provides a comprehensive view of the current understanding of the photosynthetic mechanisms linked to bio-hydrogen production but also extends this view to the anaerobic-dark processes involved in transforming the solar-generated biomass into biogas along with a deep coverage of both structural and functional aspects of the main enzymes involved, such as nitrogenases and hydrogenases. The fifteen chapters of this book offer a broad coverage of this emerging research field and, it is hoped, will be accessible to most advanced undergraduates, graduate students, PhD students and researchers looking to broaden their knowledge on the photosynthetic and fermentation processes applied to hydrogen gas generation. For biologists, biochemists, biophysicists and microbiologists, this volume will provide a solid and quick starting base to get into biotechnological problems of “ microbial bioenergy”. This volume will also be of interest to advanced undergraduates in chemical engineering and biotechnology teachers wanting a single reference book on the latest understanding of the critical aspects of microbial bioenergy production. This volume is dedicated to both Hans Gaffron (1902-1979), who discovered H₂-production by green algae under sulfur starvation in 1942, and Howard Gest (1921-2012), who first described H₂-production by purple non-photosynthetic bacteria in 1949.

About the Author

Davide Zannoni, Professor of General Microbiology, received the doctoral degree in Biological Sciences, in 1973, from the University of Bologna, Italy; his thesis was on the Bioenergetics of the facultative photosynthetic bacterium *Rhodobacter* (Rb.) *capsulatus*. During 1977-1978, he was a research fellow of the North Atlantic Treaty Organization (NATO) at the St. Louis Medical School, Department of Biochemistry, St. Louis MO, USA, under the supervision of Professor Barry L. Marrs. In 1979, he was appointed Lecturer in Plant Biochemistry and in 1981, he was promoted to become Associate Professor of Plant Biochemistry, at the Faculty of Sciences, University of Bologna. As a research fellow of the European Molecular Biology Organization (EMBO) in 1981, 1983 and 1991, he visited several European laboratories, namely: Department of Biochemistry and Microbiology, St. Andrews University, St. Andrews Scotland U.K.; Département de Biologie Cellulaire et Moléculaire, Centre National Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique (CEA) Saclay Gif-sur-Yvette, France; Department of Microbiology, University of Göttingen, Göttingen Germany, to investigate both the structure and the function of membrane

redox-complexes in a variety of microbial genera. Zannoni's scientific interests now include bioenergetics and genomics of microbial remediation of metals and metalloids in planktonic cells and biofilms of *Rb. capsulatus* and *Pseudomonas pseudoalcaligenes*, molecular mechanisms of bacterial movement (chemo- and photo-taxis) and biofilm formation, alkane and naphthenic acid degradation by *Rhodococcus* spp., the use of microbial biofilms as electricity-producing systems and finally, bio-hydrogen anaerobic production by *Thermotoga*. Zannoni's pioneering work on hydrogen metabolism in *Rb. capsulatus* began in 1981 (European Community Solar Energy Research & Development). He is author and/or co-author of more than 130 publications in international research journals and he has published several research as well as textbooks for students. From 2004 to 2010, Prof. Zannoni has been the Head of the Department of Biology of the University of Bologna. He is presently acting as a Coordinator of the Master's degree in Molecular & Industrial Biotechnology at the Department of Pharmacy & Bio-Technology, University of Bologna – Alma Mater Studiorum, Italy. See his web site for further information.

Roberto De Philippis, Associate Professor of Microbial Biotechnology, received his Laurea degree in Chemistry from the University of Florence, Italy, in 1978; his thesis was on the chemical interactions between nucleic acids and amino acids as studied by means of NMR and EPR techniques. During 1978-1981, he was a research scientist at the Research Center on Plastic Polymers at "Montedison" SpA, Milan, Italy; during 1981-1983 he was responsible for the scientific and technical aspects of Baker's yeast production at a Food Industry in Florence. During 1984-1990, he was a Research Fellow at the Institute of Agricultural and Technical Microbiology, University of Florence. During 1990-2001, he served as a Lecturer at the Department of Food and Microbiological Science and Technology, University of Florence. From 2001 he has been an Associate Professor of Microbial Biotechnology at the University of Florence, Department of Agrifood Production and Environmental Sciences. He is at the same time, an Associate Researcher at the Institute of Chemistry of Organometallic Compounds, Italian National Research Council (ICCOM-CNR), Florence. His research activity is mainly concerned with the physiology and biochemistry of photosynthetic bacteria. In particular, Roberto is studying the physiology and the possible biotechnological exploitation of phototrophic microorganisms in the production of biopolymers of industrial interest or in processes related to the production of energy from renewable resources or for the treatment of polluted waters. He is also involved in studies on the formation of phototrophic biofilms on monuments or in the stabilization of desert soils by the use of phototrophic microorganisms. He has been hosted for his research by several Institutions in China, India, Israel, Mexico, Portugal and in USA. He has published more than 80 scientific papers in international peer reviewed journals, ten chapters in books, and has participated in more than 90 international and national Congresses. During 1999-2001, Roberto was Secretary/Treasurer and currently, he is President-elect of the International Society for Applied Phycology. He is an Assistant Editor of the Journal of Applied Phycology. From 2010, he has been a Delegate for Italy in the IEA-HIA (International Energy Agency-Hydrogen Implementing Agreement) New Annex 21 "Bio-inspired and Biological Hydrogen.

Users Review

From reader reviews:

Agustin Thornsberry:

This Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) are reliable for you who want to be a successful person, why. The main reason of this Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) can be one of many great books you must have is usually giving you more than just simple reading food but feed you actually with information that might be will shock your preceding knowledge. This book will be handy, you can bring it almost everywhere and whenever your conditions both in e-book and printed ones. Beside that this Microbial BioEnergy: Hydrogen

Production (Advances in Photosynthesis and Respiration) giving you an enormous of experience such as rich vocabulary, giving you trial run of critical thinking that we realize it useful in your day pastime. So , let's have it appreciate reading.

Margaret Coleman:

Reading a book can be one of a lot of task that everyone in the world adores. Do you like reading book and so. There are a lot of reasons why people like it. First reading a e-book will give you a lot of new data. When you read a publication you will get new information due to the fact book is one of various ways to share the information or their idea. Second, examining a book will make you actually more imaginative. When you studying a book especially fictional book the author will bring someone to imagine the story how the character types do it anything. Third, you are able to share your knowledge to other individuals. When you read this Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration), it is possible to tells your family, friends and soon about yours reserve. Your knowledge can inspire average, make them reading a book.

Stephanie Dillard:

A lot of people always spent their own free time to vacation or maybe go to the outside with them household or their friend. Were you aware? Many a lot of people spent they free time just watching TV, or playing video games all day long. If you need to try to find a new activity that's look different you can read a new book. It is really fun to suit your needs. If you enjoy the book you read you can spent all day long to reading a book. The book Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) it doesn't matter what good to read. There are a lot of individuals who recommended this book. These people were enjoying reading this book. If you did not have enough space to deliver this book you can buy often the e-book. You can m0ore effortlessly to read this book from your smart phone. The price is not to fund but this book provides high quality.

Dennis Green:

Beside this particular Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) in your phone, it can give you a way to get nearer to the new knowledge or information. The information and the knowledge you can got here is fresh from oven so don't possibly be worry if you feel like an old people live in narrow small town. It is good thing to have Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) because this book offers for your requirements readable information. Do you often have book but you rarely get what it's all about. Oh come on, that will not end up to happen if you have this within your hand. The Enjoyable option here cannot be questionable, just like treasuring beautiful island. Techniques you still want to miss the item? Find this book as well as read it from right now!

Download and Read Online Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer #468XT0MP5UK

Read Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer for online ebook

Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer books to read online.

Online Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer ebook PDF download

Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer Doc

Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer MobiPocket

Microbial BioEnergy: Hydrogen Production (Advances in Photosynthesis and Respiration) From Springer EPub